\qquad Date:

Review Packet: Unit 1 - The Number System

Key Concepts

Module 1: Adding and Subtracting Integers
7.NS.1, 7.NS.1a, 7.NS.1b, 7.NS.1c, 7.NS.1d, 7.NS.3, 7.EE. 3

- To add integers with the same sign, add the absolute value of the integers and use the sign of the integers for the sum. (Lesson 1.1)
- To add integers with different signs, subtract the smaller absolute value from the greater absolute value. The sign of the sum will be the sign of the addend with the greater absolute value. (Lesson 1.2)
- Subtracting one integer from another integer is the same as adding its opposite. (Lesson 1.3)
- To solve multi-step problems involving addition and subtraction of integers, use a four step problem-solving plan. (Lesson 1.4)

Module 2: Multiplying and Dividing Integers
 7.NS.2, 7.NS.2a, 7.NS.2b, 7.NS.2c, 7.NS. 3

- The product of two integers with the same sign is positive. The product of two integers with different signs is negative. (Lesson 2.1)
- The quotient of two integers with the same sign is positive. The quotient of two integers with different signs is negative. (Lesson 2.2)
- To simplify an expression with more than one operation, use the order of operations. (Lesson 2.3)

Module 3: Rational Numbers

7.NS.1, 7.NS.1a, 7.NS.1b, 7.NS.1c, 7.NS.1d, 7.NS.2, 7.NS.2a, 7.NS.2c, 7.NS.2d, 7.NS.3, 7.EE. 3

- A number that can be written as a terminating decimal or a repeating decimal is a rational number. (Lesson 3.1)
- Addition and subtraction of rational numbers can be demonstrated on a number line. (Lesson 3.2)
- To subtract a number, add its opposite. (Lesson 3.3)
- The product of two numbers with different signs is negative. The product of two numbers with the same signs is positive. (Lesson 3.4)
- The quotient of two numbers with different signs is negative. The quotient of two numbers with the same signs is positive. (Lesson 3.5)
- Solving real-world and mathematical problems involves applying properties of operations as well as being able to strategically convert rational numbers to any form to better facilitate computation and estimation. (Lesson 3.6)

Adding and Subtracting Rational Numbers Flow Chart

If your fraction needs to be simplified:
Convert the improper fraction to a mixed number, if necessary:

Simplify:
Divide by the same number in the numerator and denominator

HELPFUL REMINDERS:

Subtracting Integers Hint:
 Keep Change Change

Keep the first number Change the operational sign Change the second number to its additive inverse

Example:	
K C C C C	
$-3-5$	$\mathbf{K ~ C ~ C ~}$
$-3+-5$	$11--2$
$11++2$	

Same sign: Add, keep original sign $\quad 3+5=8 \rightarrow-8 \quad 11+2=13 \rightarrow+13 \quad$ Same sign: Add, keep original sign

Converting Mixed Numbers to Improper Fractions

K C C
$11--2$
$11++2$

$$
3 \frac{2}{5}
$$

1) First multiply the denominator times the whole number.
$5 \times 3=15$

$$
3 \frac{17}{5}
$$

2) Next, add your answer from step 1 to your numerator.
$15+2=17$

Finding the Least Common Denominator (LCD)

1) Write the multiples of both denominators by counting by each number.
2) Circle the numbers that are in common (the same) between both sets of multiples.
3) Choose the least (smallest) of the common numbers. This is the LCD.
4) Change both original fractions into equivalent fractions using the LCD. Do this by multiplying. (THINK: What do you have to multiply to get from the original denominator to the LCD? Multiply that number by the numerator to get the new numerator.)

Multiplying Rational Numbers Flow Chart

Multiply the absolute value of both numbers.

Multiplying
Fractions
\& Mixed Numbers

mixed numbers to improper fractions.
(see above)

Multiply:
$\frac{\text { numerator } \times \text { numerator }}{\text { denomin ator } \times \text { denomin } \text { ator }}$

Move the decimal in the product the correct number of spaces (based on factors).

Decide the sign of the answer.
(see chart below)

Sign of Factor p	Sign of Factor q	Sign of Product $p q$
+	-	-
-	+	-
+	+	+
-	-	+

factor $=$ a number that is multiplied by another number to get a product product $=$ the answer in a multiplication problem

Dividing Rational Numbers Flow Chart

Sign of Dividend p	Sign of Divisor q	Sign of Quotient $\frac{p}{q}$
+	-	-
-	+	-
+	+	+
-	-	+

The location of the negative sign does not affect the quotient. For a fractional quotient, the negative sign can be in the numerator, in the denominator, or in front of the fraction.

$\frac{\#}{0}=$ undefined
$\frac{0}{\#}=$ zero

Writing Rational Numbers as Decimals

To convert rational numbers to decimals, use long division.

Remember:
If the decimal comes to an end, it is a terminating decimal. If the decimal continues forever, it is a repeating decimal.

An improper fraction is greater than 1 . Therefore, its equivalent decimal should also be greater than 1.

1) Divide: denomin ator $\overline{\text { numerator }}$
2) Remember to add decimals (in the dividend AND the quotient), and zeros.
3) Then, either:
a. Add zeros in the dividend and continue dividing until the remainder is 0 . OR
b. Stop dividing once you discover a repeating pattern in the quotient.
i. Write the quotient with its repeating pattern and indicate that the repeating numbers continue by putting a line over only the repeating numbers.

Writing Mixed Numbers as Decimals

To convert mixed numbers to decimals, rewrite the fractional part of the number as a decimal using long division.

Remember:
Keep the whole number from the mixed number as the whole number in the decimal, by writing it to the LEFT of the decimal point.

Mixed numbers are greater than 1 so their decimal equivalents should also be greater than 1 .

1) Turn the fractional part into a long division problem.
2) Rewrite the fractional part of the number as a decimal.
3) Rewrite the mixed number as the sum of the whole part and the decimal part.

Adding Three or More Rational Numbers

When adding more than two rational numbers, GROUP NUMBERS WITH THE SAME SIGN and combine them first.

Then, combine numbers with different signs, using the rules for adding/subtracting integers.

REMEMBER:
When lining up decimals, if there are different amounts of numbers after the place value, add zero placeholders.

For example:

Since two numbers are positive, group those together:

Combine those numbers:

Combine numbers with different signs, using rules for adding integers:
$2.32-11.2+3.95$
$(2.32+3.95)-11.2$
$6.27-11.2 \underline{0}$
-4.93

